Parameter identifiability and identifiable combinations in generalized Hodgkin-Huxley models

نویسندگان

  • Olivia J. Walch
  • Marisa C. Eisenberg
چکیده

The use of Hodgkin-Huxley (HH) equations abounds in the literature, but the identifiability of the HH model parameters has not been broadly considered. Identifiability analysis addresses the question of whether it is possible to estimate the model parameters for a given choice of measurement data and experimental inputs. Here we explore the structural identifiability properties of a generalized form of HH from voltage clamp data. Through a scaling argument, we conclude that the steady-state gating variables are not identifiable from voltage clamp data, and then further show that their product together with the conductance term forms an identifiable combination. We additionally show that these parameters become identifiable when the initial conditions for each of the gating variables are known. The time constants for each gating variable are shown to be identifiable, and a novel method for estimating them is presented. Finally, the exponents of the gating variables are shown to be identifiable in the two-gate case, and we conjecture these to be identifiable in the general case. These results are broadly applicable to models using HH-like formalisms, and show in general which parameters and combinations of parameters are possible to estimate from voltage clamp data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determining Structurally Identifiable Parameter Combinations Using Subset Profiling

Identifiability is a necessary condition for successful parameter estimation of dynamic system models. A major component of identifiability analysis is determining the identifiable parameter combinations, the functional forms for the dependencies between unidentifiable parameters. Identifiable combinations can help in model reparameterization and also in determining which parameters may be expe...

متن کامل

Identifiability of a Hodgkin-Huxley type ion channel under voltage step measurement conditions

In this paper, we analyze the identifiability properties of a Hodgkin-Huxley (HH) type voltage dependent ion channel model under voltage clamp circumstances. The elimination of the differential variables is performed, and the identifiability of various parameters is analyzed using the differential algebra approach and the algorithm based on the Taylor series expansion of the output. It is shown...

متن کامل

Parameter Identifiability and Redundancy in a General Class of Stochastic Carcinogenesis Models

BACKGROUND Heidenreich et al. (Risk Anal 1997 17 391-399) considered parameter identifiability in the context of the two-mutation cancer model and demonstrated that combinations of all but two of the model parameters are identifiable. We consider the problem of identifiability in the recently developed carcinogenesis models of Little and Wright (Math Biosci 2003 183 111-134) and Little et al. (...

متن کامل

Identifiability analysis and parameter estimation of a single Hodgkin-Huxley type voltage dependent ion channel under voltage step measurement conditions

Identifiability analysis of a single Hodgkin–Huxley (HH) type voltage dependent ion channel model under voltage clamp circumstances is performed in order to decide if one can uniquely determine the model parameters from measured data in this simple case. It is shown that the two steady-state parameters (m1 , h1) and the conductance (g) are not globally identifiable together using a single step ...

متن کامل

An algorithm for finding globally identifiable parameter combinations of nonlinear ODE models using Gröbner Bases.

The parameter identifiability problem for dynamic system ODE models has been extensively studied. Nevertheless, except for linear ODE models, the question of establishing identifiable combinations of parameters when the model is unidentifiable has not received as much attention and the problem is not fully resolved for nonlinear ODEs. Identifiable combinations are useful, for example, for the r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurocomputing

دوره 199  شماره 

صفحات  -

تاریخ انتشار 2016